Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Pharm Sci ; 112(4): 974-984, 2023 04.
Article in English | MEDLINE | ID: covidwho-2241448

ABSTRACT

Adenovirus vectors have become an important class of vaccines with the recent approval of Ebola and COVID-19 products. In-process quality attribute data collected during Adenovirus vector manufacturing has focused on particle concentration and infectivity ratios (based on viral genome: cell-based infectivity), and data suggest only a fraction of viral particles present in the final vaccine product are efficacious. To better understand this product heterogeneity, lab-scale preparations of two Adenovirus viral vectors, (Chimpanzee adenovirus (ChAdOx1) and Human adenovirus Type 5 (Ad5), were studied using transmission electron microscopy (TEM). Different adenovirus morphologies were characterized, and the proportion of empty and full viral particles were quantified. These proportions showed a qualitative correlation with the sample's infectivity values. Liquid chromatography-mass spectrometry (LC-MS) peptide mapping was used to identify key adenovirus proteins involved in viral maturation. Using peptide abundance analysis, a ∼5-fold change in L1 52/55k abundance was observed between low-(empty) and high-density (full) fractions taken from CsCl ultracentrifugation preparations of ChAdOx1 virus. The L1 52/55k viral protein is associated with DNA packaging and is cleaved during viral maturation, so it may be a marker for infective particles. TEM and LC-MS peptide mapping are promising higher-resolution analytical characterization tools to help differentiate between relative proportions of empty, non-infectious, and infectious viral particles as part of Adenovirus vector in-process monitoring, and these results are an encouraging initial step to better differentiate between the different product-related impurities.


Subject(s)
Adenoviruses, Human , COVID-19 , Humans , Capsid/chemistry , Capsid/metabolism , Viral Proteins/analysis , Adenoviridae/genetics , Adenoviruses, Human/genetics , Genetic Vectors
2.
Viruses ; 14(2)2022 02 17.
Article in English | MEDLINE | ID: covidwho-1786043

ABSTRACT

Various adenoviruses are being used as viral vectors for the generation of vaccines against chronic and emerging diseases (e.g., AIDS, COVID-19). Here, we report the improved capsid structure for one of these vectors, human adenovirus D26 (HAdV-D26), at 3.4 Å resolution, by reprocessing the previous cryo-electron microscopy dataset and obtaining a refined model. In addition to overall improvements in the model, the highlights of the structure include (1) locating a segment of the processed peptide of VIII that was previously believed to be released from the mature virions, (2) reorientation of the helical appendage domain (APD) of IIIa situated underneath the vertex region relative to its counterpart observed in the cleavage defective (ts1) mutant of HAdV-C5 that resulted in the loss of interactions between the APD and hexon bases, and (3) the revised conformation of the cleaved N-terminal segments of pre-protein VI (pVIn), located in the hexon cavities, is highly conserved, with notable stacking interactions between the conserved His13 and Phe18 residues. Taken together, the improved model of HAdV-D26 capsid provides a better understanding of protein-protein interactions in HAdV capsids and facilitates the efforts to modify and/or design adenoviral vectors with altered properties. Last but not least, we provide some insights into clotting factors (e.g., FX and PF4) binding to AdV vectors.


Subject(s)
Adenoviruses, Human/chemistry , Capsid/chemistry , Capsid/ultrastructure , Cryoelectron Microscopy/methods , Adenoviruses, Human/genetics , Capsid Proteins/genetics , Humans , Models, Molecular , Protein Conformation , Protein Interaction Domains and Motifs , Virus Assembly , Virus Internalization
4.
Viruses ; 13(1)2021 Jan 07.
Article in English | MEDLINE | ID: covidwho-1389524

ABSTRACT

We describe the complete capsid of a genotype C1-like Enterovirus A71 variant recovered from wastewater in a neighborhood in the greater Tempe, Arizona area (Southwest United States) in May 2020 using a pan-enterovirus amplicon-based high-throughput sequencing strategy. The variant seems to have been circulating for over two years, but its sequence has not been documented in that period. As the SARS-CoV-2 pandemic has resulted in changes in health-seeking behavior and overwhelmed pathogen diagnostics, our findings highlight the importance of wastewater-based epidemiology (WBE ) as an early warning system for virus surveillance.


Subject(s)
Capsid Proteins/genetics , Enterovirus A, Human/genetics , Enterovirus A, Human/isolation & purification , High-Throughput Nucleotide Sequencing/methods , Wastewater-Based Epidemiological Monitoring , Wastewater/virology , Arizona/epidemiology , Capsid/chemistry , Enterovirus Infections/epidemiology , Enterovirus Infections/virology , Humans , Molecular Epidemiology , Pandemics , Phylogeny
5.
Viruses ; 13(7)2021 07 02.
Article in English | MEDLINE | ID: covidwho-1378449

ABSTRACT

Adenovirus-based vectors are playing an important role as efficacious genetic vaccines to fight the current COVID-19 pandemic. Furthermore, they have an enormous potential as oncolytic vectors for virotherapy and as vectors for classic gene therapy. However, numerous vector-host interactions on a cellular and noncellular level, including specific components of the immune system, must be modulated in order to generate safe and efficacious vectors for virotherapy or classic gene therapy. Importantly, the current widespread use of Ad vectors as vaccines against COVID-19 will induce antivector immunity in many humans. This requires the development of strategies and techniques to enable Ad-based vectors to evade pre-existing immunity. In this review article, we discuss the current status of genetic and chemical capsid modifications as means to modulate the vector-host interactions of Ad-based vectors.


Subject(s)
Adenoviridae/genetics , COVID-19/prevention & control , Capsid/chemistry , Adenoviridae/immunology , COVID-19/immunology , COVID-19/therapy , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Genes, Viral , Genetic Vectors , Humans , Immunity , Oncolytic Virotherapy/methods , Pandemics , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification
6.
Viruses ; 13(1)2021 Jan 15.
Article in English | MEDLINE | ID: covidwho-1038679

ABSTRACT

Adenovirus (AdV) infection elicits a strong immune response with the production of neutralizing antibodies and opsonization by complement and coagulation factors. One anti-hexon neutralizing antibody, called 9C12, is known to activate the complement cascade, resulting in the deposition of complement component C4b on the capsid, and the neutralization of the virus. The mechanism of AdV neutralization by C4b is independent of downstream complement proteins and involves the blockage of the release of protein VI, which is required for viral escape from the endosome. To investigate the structural basis underlying how C4b blocks the uncoating of AdV, we built a model for the complex of human adenovirus type-5 (HAdV5) with 9C12, together with complement components C1 and C4b. This model positions C4b near the Arg-Gly-Asp (RGD) loops of the penton base. There are multiple amino acids in the RGD loop that might serve as covalent binding sites for the reactive thioester of C4b. Molecular dynamics simulations with a multimeric penton base and C4b indicated that stabilizing interactions may form between C4b and multiple RGD loops. We propose that C4b deposition on one RGD loop leads to the entanglement of C4b with additional RGD loops on the same penton base multimer and that this entanglement blocks AdV uncoating.


Subject(s)
Adenoviridae/immunology , Complement C4/chemistry , Complement C4/immunology , Models, Molecular , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/immunology , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , Binding Sites , Capsid/chemistry , Capsid/metabolism , Capsid/ultrastructure , Capsid Proteins/chemistry , Capsid Proteins/immunology , Capsid Proteins/metabolism , Capsid Proteins/ultrastructure , Humans , Immunoglobulin G/chemistry , Immunoglobulin G/immunology , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Protein Conformation , Structure-Activity Relationship
7.
Anal Chem ; 92(16): 11297-11304, 2020 08 18.
Article in English | MEDLINE | ID: covidwho-733551

ABSTRACT

Viruses are infections species that infect a large spectrum of living systems. Although displaying a wide variety of shapes and sizes, they are all composed of nucleic acid encapsulated into a protein capsid. After virions enter the host cell, they replicate to produce multiple copies of themselves. They then lyse the host, releasing virions to infect new cells. The high proliferation rate of viruses is the underlying cause of their fast transmission among living species. Although many viruses are harmless, some of them are responsible for severe diseases such as AIDS, viral hepatitis, and flu. Traditionally, electron microscopy is used to identify and characterize viruses. This approach is time- and labor-consuming, which is problematic upon pandemic proliferation of previously unknown viruses, such as H1N1 and COVID-19. Herein, we demonstrate a novel diagnosis approach for label-free identification and structural characterization of individual viruses that is based on a combination of nanoscale Raman and infrared spectroscopy. Using atomic force microscopy-infrared (AFM-IR) spectroscopy, we were able to probe structural organization of the virions of Herpes Simplex Type 1 viruses and bacteriophage MS2. We also showed that tip-enhanced Raman spectroscopy (TERS) could be used to reveal protein secondary structure and amino acid composition of the virus surface. Our results show that AFM-IR and TERS provide different but complementary information about the structure of complex biological specimens. This structural information can be used for fast and reliable identification of viruses. This nanoscale bimodal imaging approach can be also used to investigate the origin of viral polymorphism and study mechanisms of virion assembly.


Subject(s)
Microscopy, Atomic Force/methods , Nanostructures/chemistry , Spectrum Analysis, Raman/methods , Virion/chemistry , Animals , Betacoronavirus/isolation & purification , Betacoronavirus/physiology , COVID-19 , Capsid/chemistry , Chlorocebus aethiops , Coronavirus Infections/pathology , Coronavirus Infections/virology , Cryoelectron Microscopy , Discriminant Analysis , Herpesvirus 1, Human/physiology , Humans , Influenza A Virus, H1N1 Subtype/physiology , Least-Squares Analysis , Levivirus/metabolism , Pandemics , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Protein Structure, Tertiary , SARS-CoV-2 , Vero Cells
8.
Arch Med Res ; 51(6): 482-491, 2020 08.
Article in English | MEDLINE | ID: covidwho-361197

ABSTRACT

What began with a sign of pneumonia-related respiratory disorders in China has now become a pandemic named by WHO as Covid-19 known to be caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). The SARS-CoV-2 are newly emerged ß coronaviruses belonging to the Coronaviridae family. SARS-CoV-2 has a positive viral RNA genome expressing open reading frames that code for structural and non-structural proteins. The structural proteins include spike (S), nucleocapsid (N), membrane (M), and envelope (E) proteins. The S1 subunit of S protein facilitates ACE2 mediated virus attachment while S2 subunit promotes membrane fusion. The presence of glutamine, asparagine, leucine, phenylalanine and serine amino acids in SARS-CoV-2 enhances ACE2 binding. The N protein is composed of a serine-rich linker region sandwiched between N Terminal Domain (NTD) and C Terminal Domain (CTD). These terminals play a role in viral entry and its processing post entry. The NTD forms orthorhombic crystals and binds to the viral genome. The linker region contains phosphorylation sites that regulate its functioning. The CTD promotes nucleocapsid formation. The E protein contains a NTD, hydrophobic domain and CTD which form viroporins needed for viral assembly. The M protein possesses hydrophilic C terminal and amphipathic N terminal. Its long-form promotes spike incorporations and the interaction with E facilitates virion production. As each protein is essential in viral functioning, this review describes the insights of SARS-CoV-2 structural proteins that would help in developing therapeutic strategies by targeting each protein to curb the rapidly growing pandemic.


Subject(s)
Betacoronavirus/chemistry , Coronavirus Infections/virology , Pneumonia, Viral/virology , Spike Glycoprotein, Coronavirus/chemistry , COVID-19 , Capsid/chemistry , Genome, Viral , Humans , Lung/virology , Open Reading Frames , Pandemics , Phosphorylation , Protein Binding , Protein Domains , RNA, Viral/genetics , SARS-CoV-2 , Viral Envelope Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL